
N95- 33765

Using Foreground/Background Analysis to Determine Leaf and Canopy Chemistry

J.E. Pinzon 1, S.L. Ustin 1, Q.J. Hart 1, S. Jacquemoud t, and M.O. Smith 2

1De_t of Land, Air, and Water Resources, University of California, Davis, CA 95616
Dept of Geological Sciences, University of Washington, Seattle, WA 94805

I. INTRODUCTION

Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing
imaging spectrometry data, however, the technique is relatively insensitive to minor sources of

spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in
canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear
regression analysis to predict canopy chemistry. Grossman et al. (1994) reported that SMLR is

sensitive to measurement error and that the prediction of minor chemical components are not

independent of patterns observed in more dominant spectral components like water. Further,
they observed that the relationships were strongly dependent on the mode of expressing

reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or area basis
(g/m2). Thus, alternative multivariate techniques need to be examined. Smith et al. (1994)

reported a revised SMA that they termed Foreground / Background Analysis (FBA) that
permits directing the analysis along any axis of variance by identifying vectors through the n-
dimensional spectral volume orthonormal to each other. Here, we report an application of the

FBA technique for the detection of canopy chemistry using a modified form of the analysis.

II. DATA SETS AND METHODS

ILl. The leaf reflectance / chemistry data sets

The study used two datasets representing a wide range of species having divergent foliar
adaptations and conditions. These datasets were the LOPEx (__LeafQptical _Properties

Experiment) obtained from the Joint Research Centre in (Jacquemoud et al., 1994), and a
similar but smaller dataset from the Jasper Ridge Biological Preserve at Stanford University

(Grossman et al., 1994). The range of variation - several orders of magnitude - depended on

the dataset and the specific chemistry (Jacquemoud et al., 1995). Expressing reflectance as

-log R or other transforms provides other characteristics of the variance structure that could be
better exploited. The variance structure is especially critical for variables like nitrogen that are
in low concentration and do not express a wide range of variance between species.

II.2. The analysis
The general form of the SMA equation for each band is expressed as:

Ne

DNb = _ F,_. DN_, b + Eb, where DNb is the pixel radiance at band b, Fern is the
em=l

fraction of each endmember DNem weighting their radiance at band b, and Eb is an error term

accounting for the tmmodeled radiance in band b. Endmembers are chosen to explain the

spectrally distinct materials that form the convex hull of the spectral volume. This approach
can not minimize the spectral variation of endmembers whose characteristics are unrelated to
chemistry detection. A methodology that could cluster this variation into a common point is

desired. In response to this problem Smith et al. (1994) divide spectral measurements into

groups called "foreground" and "background" spectra. Their FBA approach defines a w
vector (with components Wb at each band b) such that all foreground DN spectral vectors are

projected to 1 and all background DN vectors to 0. This property is set by the FBA system of

equations:

N N

foreground E Wb, DNb + C = 1 and background E Wb. DNb + C = 0 material
b=l b=l
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whereC provides a translation. A singular value decomposition algorithm is used to determine
the vector w and the real constant C that optimizes both foreground and background equations

simultaneously. This analysis can be extend to a general system of equations in which the

projections of each spectra along the vector w are its respective chemistry content. In such a
way spectra are discriminated by their relation to chemistry variables. In the singular value

decomposition we selected the seven highest eigenvalues and their respective orthonormal

eigenvectors to account for the spectral variability.

IIl. RESULTS

IIl.1. At leaf level
The FBA was performed to define the best vector for discriminating each chemistry shown in

Table 1. The analysis was performed both on the JRC and Jasper Ridge fresh leaf datasets,
and on the JRC dry leaf dataset using R, -log R,and other non-standard transformations, like

FUNCTION CHEMISTRY

NITROGEN CELLULOSE

DATA JRCJRC JR JRC JRC JR
fl dl fl dl

R2 0.69 0.60 0.33 3.38 0.29 0.81

R 0.68 1.54 0.31 0.31 0.270.79

LogO/R) 0.60 0.34 0.30 ).20 !0.22 0.64

Filter(R) 0.62 NO0.32 0.50 NO 0.65

CARBON WATER

JRC JRC JR JRC JR

fl dl fl

0.40 0.27 0.63 0.94 ).91

0.40 0.39 0.71 i0.94 0.89

0.42 0.39 0.82 0.94 0.87

0.44 NO 0.83 0.92 0.90

the squared reflectance (R2 ). We calculated the multiple correlation coefficient (r2), to

compare the predicted values to the measured chemical concentrations. The best fit overall
(0.94) was found for predicting water content (g/g). These results show that the highest r 2 are

found for spectra having high chemical variance (Fig. 1). Low r2 values correspond to

chemistry variables that have limited variance. For example, nitrogen has a wider ran{e of
variation in the JRC dataset than the Jasper Ridge dataset and the former has higher r . In
contrast, cellulose has greater variance in the Jasper Ridge dataset and produces a higher r2.

The best-fit predicted and measured chemistry is shown in Figure 2. These results also show

that spectra are dominated by the mean reflectance response (related to albedo) rather than
variability due to minor absorptions. Clearly this is undesirable for detection of canopy

chemistry. We can try to improve detection by considering additional transformations that
reduce the effect of variance around the continuum reflectance and maximize shape

differences. Such transformations might improve predictions and provide a better basis for

predicting canopy biochemistry of minor constitutents.

The first operation was to normalize the spectra and remove albedo differences,

RR = I-_ where IIRU- R i denote the norm of the reflectance vector R.

The next step uses the fact that high variance values in any signal (reflectance in our case) has

frequency output in the Fourier domain that may be dominated by response to the dc (response

at frequency zero). The dc problem can be alleviated in different ways in the Fourier domain.
We applied a Discrete Fourier Transform (DF'I') to the 211 band spectrum to remove high

frequency response (typically related to noise) and a low frequency filter to alleviate the dc

response. The effects of these operations are shown in Figure 3. Normalization of the
reflectance spectrum does not affect the shape although it does affect the wavelength

dependent variance structure. The DFI" filtering step clearly changes the shape of the spectrum
(mean reflectance information is lost), but enhances other desirable characteristics of the
variance structure. The r2s of the FBA analysis on the normalized DFT data,set are shown in

130



Table 2. The r2s of the chemistry variables that have low sample variance (e.g., nitrogen and

cellulose) are improved using the squared spectrum, while those with high concentration or

having high intra-sample variability (like water) maintain an acceptable level of prediction

111.2. Application to AVIRIS data

The FBA chemistry vectors (water, nitrogen, lignin, and cellulose) derived from the JRC

samples were applied to normalized and filtered AVIRIS images of agricultural fields near the

city of Davis (CA) and to multitcmporal images of Jasper Ridge (CA). These results showed

distinct spatial patterns that were related to land cover and land use and with little evidence of

random noise. The chemistry patterns were not identical and followed expected patterns for

various land cover classes, e.g., high cellulose concentrations occurred in dry grasslands where

water contents and nitrogen concentrations were low. Other patterns were generally consistent

with ecological characteristics.

IV. CONCLUSIONS

The variance structure of the spectra is highly correlated with biochemical absorptions. Where

large variance exists for absorption wavelengths, the relationship to chemistry can be
.... 2

demonstrated. Thus water, for instance, can be estimated by FBA w_th a h_gh r and a

predicted relationship that is close to a 1:1 correlation. Relationships are less satisfactory for

chemicals that do not show much intrasamplc variance or have poorly defined spectral

features. However, the r 2 values are improved in datasets where variance has been maximized.

These patterns arc observed by comparing the nitrogen, cellulose and carbon r 2 between Jasper

Ridge and JRC (Table 2). Nitrogen concentration at JRC is about 2 times that at Jasper Ridge

while cellulose concentrations are reversed (Grossman et al., 1994). Chemistry predictions for

low-variance datasets arc improved by normalization and filtering before application of the

FBA while these procedures do not significantly "affect the prediction of chemistry for samples

having a high range of variance.

When FBA vectors are applied to AVIRIS image datasets the results show distinct spatial

patterns that follow ecological characteristics. Even biochemicals, like cellulose and carbon,
that have low slopes and r (--0.4--0.5) show spatially explicit patterns that follow expected

landscape trends. Further, spatial patterns are somewhat independent for each biochemical.

Thus, although we lack sufficient field data to adequately validate the image patterns,

preliminary results support the possibility of developing direct detection of canopy chemistry

using imaging spectrometry.
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Fig, 2. Best fit by filtering spectra
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Fig. 3. Effects of the transformations for spectra and variance.
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